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|) Discussion of Constrained L ayer
Damping (CLD)

a) Basic mechanics of CLD

A
Constraining Layer Hs
\ 4
A
VEM H.
v
A
Deck Hy
v

- Purpose: Reduction of vibration response through
energy dissipation

- During flexural vibration, the VEM coreisconstrained
to shear.

- Theshear in the core causes energy to be dissipated and
the motion to be damped.

- Maximum damping: symmetric structure

- Overall lossfactor h < VEM'scorelossfactor h, , where

*

G,

iIsthe VEM's complex shear modulus.
b) Form of G(f) and h(f) for VEM layer



Generally,
af @ + bf P

Example of typical material data for VEM

Polymeric Materials:

- Long molecular chains
- Strong joints among carbon Atoms
- Damping arises from relaxation and recovery of

the polymer network after it has been defor med.

Glassy M aterials

- Characterized by short-term order and
long —term disorder

- Damping arises from relaxation processes after
deformation of the glass, recovery dueto certain
conditions of ther modynamic equilibrium.
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1) Techniguesfor Representing CLD
Using the Finite Element Method (FEM)

a) Plate-Brick-Plate Elements

Plate Element
(Constraining L ayer)

Brick
Element
Rigid
Constraints
Plate
Element

The model provides several advantages:

- Accuracy

- Noredtriction with regard to therigidity and
thickness of the core and faces need be imposed.

- Nolimitation on the cor e thickness need be
imposed.

- Mode can be used with anisotropic layers.



b) Plate-Beam-Plate M odel

Disadvantages of Plate-Brick-Plate Elements M odel

- The FEM solution with solid brick elementsto model
thethin VEM layer requiresa great deal of
computation time.

- Though accurate, the cost may not justify the method

Thefollowing isa much simpler model that
also provides quite accur ate solution:

- Theplate element isused, asin the previous case, to
model the base and the constraining layer.

- Thebrick elementsarereplaced with beams
connecting the base elements and the constraining
layer elements.
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- Thestructural damping for these beams ar e specified
as.

The spring variablein shear:
Ks =GA/L

The spring variable in extension:
Ke =EA/L

E = VEM'scomplex Young s modulus

G = VEM'scomplex shear modulus

A = cross sectional area of the beam
determined by the modeling of the
base and constrained layers (£1)

L :H2+(H1+H3)/2

Note

- No need to use offset elementsor rigid
connections.

In practice, it isconvenient to select a beam of
rectangular crosssectionand set A=1. This
would imply that the VEM layer carriesall the
uniformly distributed shear.
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[11) Methods of Calculation

a) Direct Frequency Method

The NASTRAN'sdirect frequency response analysisis
recommended asfollows (the analysisis performed at a
fixed temperature):

For a given frequency, calculate the core's shear
modulus, G, the spring variablesK™ and K , determine
the complex stiffness matrix [K], and finally calculate
the desired quantities.

Repeat this processfor the range of frequencies of
interest.

Note

UAI/NASTRAN supportsdirect frequency approach for
viscoelastic materials.
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Advantages of Direct Frequency M ethod

- No assumption is made with respect to the level of
damping.

- Thefreguency dependency of the materials of the
structur e s components can be accounted for if the
stiffness matrix [K] isrecalculated each time a new
frequency is defined.

Disadvantages of Direct Freguency M ethod

- Very time consuming, especially if the [K] hasto be
recalculated for each frequency input.

- Depending on the geometry and level of damping,

there may be coupling between modes, and therefore it

may not be possible to excite one mode without
exciting the other.
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b) Modal M ethod
- In FEM discretization, the governing equationsis
[MI{U} +[K{U} ={F}
where[M] = global mass matrix, [K] = [K'] +i[K"] =
global complex stiffness matrix, {U} = global complex

displacement vector, and {U}= global complex
acceler ation vector.

- Subjecting the structure to a harmonic excitation
force {F}= {Foe'Wt}, then,

[K1- wimIfuy={F.}
Expressing {U} in terms of the eigenvectors of

[K'1- wAmIfu} ={0}
we get

{U} =[F {a(t}
{a} +[L +iH]={Q}
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Notethat thisisexpansion in an infinite space. In
practice, however, oneretainsthefirst few terms of
the expansion:

N
ui(X,t)=aj;(x)q;(t)
j=1
Note UAI/NASTRAN supportstwo other damping

options, in addition to viscous and structural
damping, with modal appr oach:

1) Define the damping as a fraction of the critical
damping to uncouple the equations.

2) Used only in transient response, define an
equivalent viscous damping independently for each
modal DOF. Thismethod convertsthe structural
damping from imaginary stiffnesstermsto real
VIiScous terms.

Disadvantages of M odal M ethod

- Approximation within Approximation

In the case of VEM, the resonance frequencies cannot be
known, and therefor e, the shape mode cannot be known.
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c) Dynamic L oading Consider ations

Clearly, accurate modeling of the input load in thefinite
element method (FEM) iscrucial.

The power spectral density (PSD), dueto itsinherent
definition, tendsto smooth out the actual input. Thismay
account for some of the minor discrepancies between test and
computed results. See also the section on damping dueto
acoustic radiation.
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V) Loss Factor Using CLD

- Thelossfactor, h, of a constrained-layer damped
structuredependson Hq, Hy, Hs, Eq, E3, G, and h,.

- Furthermore, because of G and h,, it also dependson
frequency and temperature.

- Let

h3 - H3/H1

h2 - H2/H1

e=Es/E;

Y =[3h5(1 +hg)] / (1 + hy’)
b =h/h,

- Discounting all other damping effects, the quantity b < 1.

- Thevalue of by = hma/ho approaches1asyY becomes
lar ger.

- Thelossfactor h, in general, increases, up to a point, as hs
INCr eases.

- It decreasesfor all modes of vibration (those containing
the additional rotary and trandlatory inertia terms) when
the thickness of the coreincreases except for the flexural
mode of vibration.
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G

Maximum value increases and gets shifted to left as hs increases.
Theincrease dueto h,, however, isconsiderably lessthan that
dueto hs.

I ncreasing the stiffness of the constraining layer, that is of e, will
introduce mor e shear strain into VEM.

Normally, however, e should not exceed 1.

Therefore, the maximum amount of shear strain obtained in
sandwich damping occurswhen a VEM coreis sandwiched
between two layers of structuresof same material and identical
geometry.

In situations where thisisnot possible, one may increasethe
stiffness of the constraining layer by additional constrained-layer
treatment.

The shear strain introduced into the second VEM layer is
significantly lessthan that of thefirst layer. The effect of the
additional constrained damping layersisprimarily intended to
increase the stiffness of thefirst constraining layer.

For beams of rather smple geometry, it has been found, both
experimentally and theoretically, that b isindependent of h,.
Thisis, however, not the case for plates and other complex
geometries,
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Evaluation of L oss Factor

Theevaluation of lossfactor for a complex structure such as
MAP S/C isvery difficult and requires considerablecare, and the
technique used must be evaluated very carefully.

Thereare, in general, two methods, direct freguency response
and modal strain energy, used for evaluating the overall loss
factor.

For constrained layer damping, the modal analysis pose greater
difficulty because of the lack of knowledge about accurate values
of modal frequencies.

On the other hand, the direct frequency response approach,
though applicable naturally, istime consuming and for relatively
highly damped systems may pose additional problems: coupling
between modes, which means it might not be possible to excite
one mode without exciting the other.

In view of the difficultiesinvolved in adopting either caseg, it is
thereforerecommended to use the iterative approach described
below.

Thelossfactor h of a structure executing steady state vibration,
and one whose components' propertiesare frequency
independent, can be defined in terms of energy quantities as

h = Wq

 2pW

(H1)

where W isthe energy dissipation per cycleand W isthetotal
strain energy stored in an identical undamped structure.

Techniquesfor Estimating the L oss Factor
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As stated before, the two most commonly used approaches are:

direct frequency response method and the modal strain energy
method.

a) Direct Frequency Response Method

- Actually no need to calculate the loss factor

- Asan extra bonus, thelossfactor can be calculated using
the energy ratio method, Eq. (H1). After calculatingthe
resonant frequency and the resonant displacement,

U=U+iU" .theloss factor is calculated asfollows

n = {U K" U}

R (H2
(0" YK {0}

where ()" isthe complex conjugate of ().

Advantages and Disadvantages

As stated previoudly.
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b) Modal Strain Energy Method

In the absence of frequency dependent materials, thisisthe
preferred method. Thelossfactor of ther™ mode of the structure
can be calculated from

h( = hy (H5)

where
h®) = thelossfactor of ther™ mode of the structure
hy = thelossfactor of the VEM

WO/W{" = the fraction of the elastic strain energy

attributabletothe VEM core when the structure
deformsin itsr™ mode shape

In an FEM setting, Eq. (H5) leadsto

8 Ok o

h) =h, =t
T OT 0

(H6)

where
j ) = r™" shape mode

i )= subvector found by deleting from j  all

entries not corresponding to motions of nodes of the e”
viscoelastic element

ke = element stiffness matrix of the e" viscoelastic element

k = stiffness matrix of the entire composite structure

n = number of viscoelastic elementsin the model

Noticethat Eq. (H6) isnot precisely true because it assumesthat energy
dissipated depends only on strain ener gies associated with the undamped
mode shapes. Nevertheless, in caseswhere material propertiesare
relatively independent of frequency, it produces satisfactory results. More
on thislater.
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Cases Where M aterial Properties Depend on
Frequency

Clearly, the modal strain energy approach, asis, will produce
incorrect resultsif the material properties of one, or more
components, of the structure depend on the frequency.
There are several waysto modify the approach to makeit
suitable for such situations; each having drawbacks and
advantages.

1. Direct frequency approach

2. Correction factor

3. Iteration approach

4. Combination of modal strain and direct frequency approach

1. Direct Freqguency Approach

This method was discusses earlier.

2. Correction Factor

Some investigator s have suggested to use the following form:

av{) 0
h©) =§W?” ha = (W) (H7)
g

wher e f(w) isa suitable function of frequency; the remaining
termsareasdefined in Eq. (H6).

Theform of f(w) that would produce accurate results, however,
requires extensive testing and curve fitting.

One suggested formulation, that has been adopted for MAP’s
analysis, is

25



v’ (G, (w"
h(") :é%hdz M (H8)
W ¢\ Gudre
where

Gy (W)= VEM’s shear modulus at rth mode frequency

Gqref = VEM'sshear modulusused in the final normal
modes calculation to obtain modal frequencies,
shapes, and masses

Theformulation is certainly an improvement, but
nevertheless an approximation.

It isinadequate for complex geometries such as MAP.

Test results shows consider able discrepancies, even for a
simple geometry, between analytical solution, using
differential equations, and FEM results.

To be of any value, the expression must be evaluated for
every given frequency, which, if implemented, essentially
requiresdirect frequency method.

26



3. lteration M ethod

Procedureto Determine the Eigenvalues

For a given temperature,
1. Determine G as a function of w.

2. Assume an initial (starting) W, i =0, and calculate
G and [K].

3. Calculate the eigenvalues Wy, W5, Wa, ...

4. For each j in W} do the following until certain
convergencecriteriais met.

4.1 Determine [K] and a new set of eigenvalues
wi whh wht L

4.2 Set|->i+1

The processis expected to conver ge after afew iterations.
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4. Combination of Modal Strain and Dir ect
Frequency Approaches

L ocate the resonant frequency first using the direct frequency
response.

The deflected shape of the damped structureisthen used to
calculatethe strain energy fractions stored in the element.

In this method, the complex eigenvalue problem is not solved.

| nstead, the damped resonance frequencies and cor responding
modal damping factors are obtained for a number of
frequencies.

Theloss factors of the overall structure, h;, are obtained asthe
weighted sum of theloss factor s of theindividual elements:

n .
a hw)

j,max
h == (No Need; A Bonus)

2 W)

j,max
€

wheren = number of elements, Wj(’i%axz the peak elastic strain

of element j in thei™ mode. For better accuracy, the damped
deflection curves, rather than the undamped normal modes,
are used.

Clearly, in thisapproach the computational benefits of the
modal strain energy arelost.
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V) Load Path Assumptions

If thereisaload path between the constraining layer (CL) and
the base plate, the CL carriesan axial load F;. The static
longitudinal equilibrium then requiresthat F; + F3 = 0.
Thisresultsin

E1AU; + E3Asu3 =0 *)
or

U; U Ug (**)

Now, uz = 0impliesu;, = 0 and viceversa. In some casesthis may
be inconsistent with the actual damping treatment.

For example, when the plateis clamped or fixed at the boundary
(clamped-free), while CL isfree-free.

Relaxation of relation (*) will introduce four additional degr ees of

freedom (two in the case of a beam): the in-plane displacements
uz and v3, and two rotationsfsand y s.
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For a deep beam with no load path:
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Thick Plates— No L oad Path

When the wavelengths are less ten times the plate thickness, shear
deformations and rotary inertia effects must beincluded in the
analysis.

Asaresult, when shear deformation isimportant, it cannot be

assumed that normal to the middle surface of the plate remain
normal during deformation.

/ 7

Face Sheet @'I i
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Thin Plates—No L oad Path

It isassumed that normalsto the middle surface of the
undeformed plateremain straight and normal to it during
deformation.

Furthermore, it isassumed that the stressin the transver se

direction, s,, iszero.

~A
\A
>
X

Face Sheet

Here, w' = fw/fix and w = Tw/1y.

In both casesit isassumed that the transver se displacement
(bending), w, isthesamein all layers.
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VI) Other Damping Considerations

a) Damping of Bolted Joints
b) Struts

c) Composite/Honeycomb Panels
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VIl) Effectsof Inertia Terms

The basic equations of bending vibration of unsymmetrical
viscoelastically damped constrained-layer sandwich plates
employing dissimilar elastic layer s should, in general, includethe
following effects:

el. Effects of flexural and membrane energiesin the faces

e2. Effects of transverse shear in the core

e3. Effects of transverseinertiasin both core and faces

ed. Effectsof rotary and trandlatory inertiasin both core
and faces

In a majority of both experimental and analytical investigations,
the last effects, e4, have been neglected.

Theassumption isvalid at low frequencies where transver se
inertiais predominant.

At high frequenciesthese effects are, however, of quite
importance and their neglect may lead to erroneous r esults.

In fact, in the case of sandwich platesthey are of considerable
importance at even relatively lower frequencies.

Thetransverseresponseisrelatively unaffected by theinclusion
of therotary and trandatory inertiaterms.

Thelongitudinal responses of both face and constraining layer,
however, are consider ably affected.
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